Tournament immersion and cutwidth

نویسندگان

  • Maria Chudnovsky
  • Alexandra Ovetsky Fradkin
  • Paul D. Seymour
چکیده

A (loopless) digraph H is strongly immersed in a digraph G if the vertices of H are mapped to distinct vertices of G, and the edges of H are mapped to directed paths joining the corresponding pairs of vertices of G, in such a way that the paths used are pairwise edge-disjoint, and do not pass through vertices of G that are images of vertices of H. A digraph has cutwidth at most k if its vertices can be ordered {v1, . . . , vn} in such a way that for each j, there are at most k edges uv such that u ∈ {v1, . . . , vj−1} and v ∈ {vj , . . . , vn}. We prove that for every set S of tournaments, the following are equivalent: • there is a digraph H such that H cannot be strongly immersed in any member of S • there exists k such that every member of S has cutwidth at most k • there exists k such that every vertex of every member of S belongs to at most k edge-disjoint directed cycles. This is a key lemma towards two results that will be presented in later papers: first, that strong immersion is a well-quasi-order for tournaments, and second, that there is a polynomial time algorithm for the k edge-disjoint directed paths problem (for fixed k) in a tournament.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing cutwidth and pathwidth of semi-complete digraphs via degree orderings

The notions of cutwidth and pathwidth of digraphs play a central role in the containment theory for tournaments, or more generally semi-complete digraphs, developed in a recent series of papers by Chudnovsky, Fradkin, Kim, Scott, and Seymour [2, 3, 4, 8, 9, 11]. In this work we introduce a new approach to computing these width measures on semi-complete digraphs, via degree orderings. Using the ...

متن کامل

The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball.

To evaluate the effectiveness of recovery strategies on physical performance during a 3-day tournament style basketball competition, 29 male players (mean age 19.1 years, s= 2.1; height 1.84 m, s= 0.34; body mass 88.5 kg, s= 14.7) were assigned to one of three treatment groups: carbohydrate+stretching (7.7 g kg(-1) day(-1), s= 1.7; 'n = 9), cold water immersion (11 degrees C, 5 x 1; n = 10) or ...

متن کامل

Cutwidth of Split Graphs and Threshold Graphs

We give a linear-time algorithm to compute the cutwidth of threshold graphs, thereby resolving the computational complexity of cutwidth on this graph class. Threshold graphs are a well-studied subclass of interval graphs and of split graphs, both of which are unrelated subclasses of chordal graphs. To complement our result, we show that cutwidth is NPcomplete on split graphs, and consequently a...

متن کامل

Cutwidth of Split Graphs, Threshold Graphs, and Proper Interval Graphs

We give a linear-time algorithm to compute the cutwidth of threshold graphs, thereby resolving the computational complexity of cutwidth on this graph class. Although our algorithm is simple and intuitive, its correctness proof relies on a series of non-trivial structural results, and turns out to be surprisingly complex. Threshold graphs are a well-studied subclass of interval graphs and of spl...

متن کامل

Using cutwidth to improve symbolic simulation and Boolean satisfiability

In this paper, we propose cutwidth based heuristics to improve the efficiency of symbolic simulation and SAT algorithms. These algorithms are the underlying engines of many formal verification techniques. We present a new approach for computing variable orderings that reduce CNF/circuit cutwidth. We show that the circuit cutwidth and the peak number of live BDDs during symbolic simulation are e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2012